Minimal H-sets and Unicity of Best Approximations

LEE W. JOHNSON

Department of Mathematics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061

Communicated by John R. Rice

Received January 2, 1971

INTRODUCTION

Let X be a compact Hausdorff space and let C(X) denote the Banach space of real-valued functions continuous on X, normed with the sup norm. Let V be a linear subspace of C(X). For $p \in V$ and $f \in C(X)$, let E(p, f) denote the set of extreme points of p-f, $E(p, f) = \{x \in X \mid |p(x) - f(x)| = ||p - f||\}$. Following Collatz [2], we say a set $Q \subseteq X$ is an H-set for V if $Q = P \cup N$, $P \cap N = \emptyset$ and there is no $q \in V$ satisfying q(x) > 0, $x \in P$ and q(x) < 0, $x \in N$.

We can decompose E(p, f) into two disjoint sets P and N by $P = \{x \in E(p, f) \mid p(x) - f(x) > 0\}, N = \{x \in E(p, f) \mid p(x) - f(x) < 0\}$, and we call this the natural decomposition. The following theorem is well known and characterizes best approximations to f by elements of V.

THEOREM. p is best approximation to f if and only if E(p, f) is an H-set for V under the natural decomposition.

It is our purpose to give a sufficient condition, in terms of E(p, f), that a best approximation be unique.

MINIMAL H-SETS

Let $Q = P \cup N$ be an *H*-set for *V*. We call *Q* a minimal *H*-set if for each $x' \in Q$, $Q' = Q - \{x'\}$ is not an *H*-set, where $Q' = P' \cup N'$ and $P' \subseteq P$, $N' \subseteq N$. Minimal *H*-sets correspond to primitive extremal signatures introduced by Rivlin and Shapiro [4]. They have been enumerated and characterized by Brosowski [1] and Taylor [5] for the case when X is a compact subset of \mathbb{R}^n and V is the (n + 1)-dimensional subspace of linear polynomials.

LEMMA 1. Let p be a best approximation to f, and let $Q \subseteq E(p, f)$ be a minimal H-set under the natural decomposition. Then all best approximations agree on Q.

Proof. Let $Q = P \cup N$ and suppose q is also a best approximation to f. Suppose $q(x') \neq p(x')$ where $x' \in Q$. With no loss of generality, we may assume $x' \in P$, and, thus, q(x') < p(x'). As Q is a minimal H-set, there is $h \in V$ such that h(x) > 0 for $x \in P - \{x'\}$ and h(x) < 0 for $x \in N$. Choose $\lambda > 0$ so that $0 \leq \lambda |h(x')| < p(x') - q(x')$. Since $p(x) - q(x) \ge 0$ for $x \in P - \{x'\}$ and $p(x) - q(x) \leq 0$ for $x \in N$, then $p(x) - q(x) + \lambda h(x)$ is positive on P and negative on N, a contradiction. Thus, q(x) = p(x) for all $x \in Q$.

In [3], Newman and Shapiro defined the concept of a set of uniqueness. Following the terminology of that paper, we say a minimal *H*-set *Q* is a strong minimal *H*-set if $q \in V$ and q(x) = 0 for all $x \in Q$ implies $q \equiv 0$. Using Lemma 1 and the characterization of best approximations given in the introduction, the following is immediate.

COROLLARY 1. If E(p, f) contains a strong minimal H-set under the natural decomposition then p is a best approximation to f and p is unique.

When V is finite dimensional, it is possible to characterize strong minimal H-sets. Let |Q| denote, as usual, the cardinality of the set Q. Then we have the following

THEOREM 1. Suppose V has dimension n and suppose Q is a minimal H-set for V. Q is a strong minimal H-set if and only if |Q| = n + 1.

Proof. Let $Q = P \cup N$ and let $\{u_1(x), ..., u_n(x)\}$ be a basis for V. Define $\sigma(x) = 1$ for $x \in P$ and $\sigma(x) = -1$ for $x \in N$, and let $U(x) = (u_1(x), ..., u_n(x))$. As Q is an H-set, the origin θ of \mathbb{R}^n is in the convex hull of the set of vectors $A = \{\sigma(x) \cdot U(x) \mid x \in Q\}$. By Carathéodory's theorem, θ is in the convex hull of n + 1 or fewer vectors in A, so if Q is a minimal H-set it must be that $|Q| \leq n + 1$.

Let |Q| = k and form the $k \times n$ matrix $M = (m_{ij})$, where $m_{ij} = u_j(x_i)$. The set A of vectors is linearly dependent, so when $k \leq n$, there is a nonzero vector $y \in \mathbb{R}^n$ such that $My = \theta$ (where θ is the origin in \mathbb{R}^k). Thus, for $k \leq n$, Q is not a strong minimal H-set.

Suppose k = n + 1. If the vectors in A span \mathbb{R}^{j-1} but not \mathbb{R}^j where $j \leq n$, we can again apply Carathéodory's theorem to deduce Q is not minimal. Thus, M contains a nonsingular $n \times n$ submatrix, and, therefore, Q is a strong minimal H-set.

JOHNSON

References

- B. BROSOWSKI, Über extremalsignaturen linear polynome in n veränderlichen, Numer. Math. 7 (1965), 396-405.
- 2. L. COLLATZ, "Functional Analysis and Numerical Mathematics," Academic Press, New York, 1966.
- D. J. NEWMAN AND H. S. SHAPIRO, Some theorems on Chebshev approximation, Duke Math. J. 30 (1963), 673-682.
- 4. T. J. RIVLIN AND H. S. SHAPIRO, A unified approach to certain problems of approximation and minimization, J. SIAM 9 (1960), 670–699.
- 5. G. D. TAYLOR, On minimal H-sets, J. Approximation Theory 5 (1972), 113-117.