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INTRODUCTION

Let X be a compact Hausdorff space and let C(X) denote the Banach space
of real-valued functions continuous on X, normed with the sup norm. Let V
be a linear subspace of C(X). For p E V andfE C(X), let E(p,J) denote the
set of extreme points of p-J, E(p,J) = {x E X I Ip(x) - I (x) I = lip - fll}.
Following Collatz [2], we say a set Qk X is an H-set for V if Q = PUN,
P n N = 0 and there is no q E V satisfying q(x) > 0, X E P and q(x) < 0,
XEN.

We can decompose E(p,J) into two disjoint sets P and N by
P = {x E E(p,J) Ip(x) - I(x) > O}, N = {x E E(p,J) Ip(x) - I(x) < O},
and we call this the natural decomposition. The following theorem is well
known and characterizes best approximations to fby elements of V.

THEOREM. P is best approximation tofifand only ifE(p,/) is an H-setfor V
under the natural decomposition.

It is our purpose to give a sufficient condition, in terms of E(p,J), that a
best approximation be unique.

MINIMAL H-SETS

Let Q = PuN be an H-set for V. We call Q a minimal H-set if for each
x' E Q, Q' = Q - {x'} is not an H-set, where Q' = P' u N' and P' k P,
N' k N. Minimal H-sets correspond to primitive extremal signatures intro
duced by Rivlin and Shapiro [4]. They have been enumerated and charac
terized by Brosowski [1] and Taylor [5] for the case when X is a compact
subset of Rn and V is the (n + I)-dimensional subspace oflinear polynomials.
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LEMMA 1. Let p be a best approximation to J, and let Q C; E(p,J) be a
minimal H-set under the natural decomposition. Then all best approximations
agree on Q.

Proof Let Q = PuN and suppose q is also a best approximation to f
Suppose q(x') 7'= p(x') where x' E Q. With no loss of generality, we may
assume x' E P, and, thus, q(x') < p(x'). As Q is a minimal H-set, there is
hE V such that h(x) > 0 for x E P - {x'} and h(x) < 0 for x E N. Choose
II > 0 so that 0 ~ II I h(x')[ < p(x') - q(x'). Since p(x) - q(x) ;;;: 0 for
x E P - {x'} and p(x) - q(x) ~ 0 for x E N, then p(x) - q(x) + IIh(x) is
positive on P and negative on N, a contradiction. Thus, q(x) = p(x) for all
XEQ.

In [3], Newman and Shapiro defined the concept of a set of uniqueness.
Following the terminology of that paper, we say a minimal H-set Q is a strong
minimal H-set if q E V and q(x) = 0 for all x E Q implies q - O. Using
Lemma 1 and the characterization of best approximations given in the
introduction, the following is immediate.

COROLLARY 1. IfE(p,J) contains a strong minimal H-set under the natural
decomposition then p is a best approximation to f and p is unique.

When V is finite dimensional, it is possible to characterize strong minimal
H-sets. Let I Q I denote, as usual, the cardinality of the set Q. Then we have
the following

THEOREM 1. Suppose V has dimension n and suppose Q is a minimal H-set
for v. Q is a strong minimal H-set if and only if I Q [ = n + 1.

Proof Let Q = PuN and let {Ul(X), ... , uix)} be a basis for V. Define
a(x) = 1 for x E P and a(x) = -1 for x E N, and let U(x) = (u1(x), ... , un(x».
As Q is an H-set, the origin () of Rn is in the convex hull of the set of vectors
A = {a(x) . U(x) I x E Q}. By Caratheodory's theorem, () is in the convex hull
of n + 1 or fewer vectors in A, so if Q is a minimal H-set it must be that
IQI~n+1.

Let I Q I = k and form the k X n matrix M = (mil), where mil = U;(Xi)'
The set A of vectors is linearly dependent, so when k ~ n, there is a nonzero
vector y E Rn such that My = () (where () is the origin in Rk). Thus, for k ~ n,
Q is not a strong minimal H-set.

Suppose k = n + 1. If the vectors in A span Rl-l but not Rl where j ~ n,
we can again apply Caratheodory's theorem to deduce Q is not minimal.
Thl,ls, M contains a nonsingular n X n submatrix, and, therefore, Q is a
strong minimal H-set.
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